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INTRODUCTION

Two developments within the past decade have had a major impact upon our ability
to infer useful information about ash fusion temperatures from the composition of
the ash. The emergence of fast and accurate multielement analyzers means that the
chemical composition of an ash can be determined quickly and reliably. At the same
time, the proliferation of personal computers, and of statistical software written
for them, makes it poss1b1e to rapidly estimate an ash fusion temperature, saving
the two or three days’ time which would be requ1red to determine fusion
temperatures in accordance with standard procedures.'

In order for such an estimate to be useful, a valid and reliable algorithm is
needed. Multiple linear regression (MLR) analysis has been used by a number of
workers to obtain estimates generally f?und to be superior to the single-term
factors used in the earlier literature. The present work re-examines the use
of MLR analysis with particular reference to techniques for avoiding the problem
of multicollinearity.

EXPERIMENTAL

Seven source coals, of rank from lignite A to medium volatile bituminous, were
selected for study. Coal sourses, proximate and ultimate analyses, and ash
compositions have been reported.”™ Table 1 shows the ranges of the analyses.
After reduction to -60 mesh (-0.25 mm) three blends were prepared, in the
proportions 3:1, 1:1 and 1:3, for each of the 21 binary combinations of source
coals. Ash samples from the source coals and the 63 blended coals were then
prepared in accordance with ASTM Method D 1857.°

Ash samples were fused with lithium tetraborate for elemental analysis by X-ray
fluorescence spectrometry, using an ORTEC Model 6141 spectrometer. Calibration and
analysis conditions have been reported elsewhere.”’'® Cross-analyses were made by
inductively coupled plasma spectrometry, using a LECO Plasmarray ICP 500
spectrometer. It is necessary to analyze the ﬁshes of each blend, since
composition cannot be estimated by 1nterpo1atlon

Ash fusion temperatures (reducing atmosphere) were measured in duplicate or
triplicate on ash -splits using a LECO Model AF-600 ash fusibility system.

Precision for the four ash fusion temperatures is given in Table 2. Except for
fluid temperature, the average error estimate is less than 18°F (10 K).

Statistical analyses were conducted using the Statistical Analysis System.'

RESULTS
Ash properties cannot be adequately described by assumlng amixture of ten discrete
oxides. These components obviously interact with one another, in acid-base and in

other metathetic reactions. To take account of these, a sgt qf crossterms can be
generated, for example, [Na,01*[S0;] from [Na,0] and [SO,]. For brevity these
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oxides and their crossterms will be represented by the parent element symbols,
e.g., Na and Na*S.

Limitations Imposed upon Regressor Selection. In developing an algorithm to
estimate an ash fusion temperature, the main task is that of selecting regressor
terms from among the ten direct analyses and the 45 crossterms. The wealth of
candidate regressors requires the use of some selection rules. There are, for
example, 29 million six-term combinations of these regressors. We have chosen to
focus upon the extent of collinearity among the selected regressors. When a
substantia] linear dependence exists between two variables, they are said to be
collinear.”™ While high collinearity between a predictive variable and the
dependent variable indicates a good predictive relationship, high correlations
among predictive variables are not desirable. MLR analysis is based upon the
assumption of orthogonality: the distribution of values of each predictor is
assumed to be independent of the distribution of values of any other predictor.
That ideal condition is seldom found in real data, certainly not in coal ash
compositional data. Fortunately, multiple regression can tolerate an appreciable
amount of collinearity among regressors. Nevertheless, a major hazard in MLR
analysis is that in the presence of excessively high collinearities among
regressors (multicollinearity) it is easy to get predictive equations which are
good-looking in terms of R® and root mean square error of estimate (RMSE), but
which are in fact useless.

Multicollinearity in a candidate regression ana]lsis is typically detected by
instabilities of regression coefficients, such as'
(1) large changes in values when a variable is added to or deleted from the

rzltzjt)j(ﬂl,arge changes in values when datasets are added or dropped from the

r?gl)‘;(ﬂl’av-ge standard errors associated with the coefficients of important
Al oft(te;r::é regressions are of the form:

AFT crimtes = Do + ByXy + boXy + byXs + ... (1)

The term common to all regressions on a given AFT is the intercept term by. A
convenient flag for multicollinearity in any particular candidate regression is the
standard error of this intercept term (SEI). Since the RMSE’s of the better-
looking regressions are found to be about 45°F (25 K), we have adopted as a
screening criterion that an acceptable regression must have an SEI value of less
than 90°F (50 K).

For the following analysis Pearson’s correlation coefficient R is used to express
collinearity between pairs of predictor variables, while R? when used is the square
of the multiple correlation coefficient for a given regression.

If we set the critical value of R (R.) at 0.99, only 5 of the 55 terms (10 direct
analyses and 55 crossterms) are founa to have collinearities with other regressor
terms for which R > R.. The remaining 50 variables are free of ‘significant’
correlations [significant in terms of this selected value of R.] with other
predictive variables. At R. = 0.99 the five collinear terms occur in a single
cluster [Mg, Mg*Na, Mg*S, Mg*Si, Mg*Ti}. On the other hand, at R. = 0.85, only 7
- of the 55 terms are free of significant correlations with others, the other 48
occurring in three correlation clusters.

Our first approach has been to set R. at each of several values, then for each
value of R to generate the best available regressions which avoid combinations of

regressors for which Ry > Re:




When R, is set at 0.99 there are few restrictions on regressors. For ash softening
temperature we find a good four-term regression, for which R® = .859 and RMSE is
an acceptable 58.2°F (32.3 K). When the best (by R°) five-term regressions were
examined, the first three regressions were unaccgptab]e, all having SEI’s > 200°F.

For the first acceptable five-term regression R = 0.885 and RMSE = 52.9°F (29.4
K). Among the next fifty regressions [the best ten (by Rz) regressions containing
6 to 10 terms] none were acceptable; all were rejected by the SEI criterion.

When R, is set at 0.85 there are considerably more restrictions on the combinations
of regressors which can be used in any particular regression. The best (by R%)
three-, four- and five-term regressions are all acceptable by the SEI criterion,
but are not as powerful as those found above. For example, for the best five-term
regression R° = 0.855 and RMSE =. 59.3°F (32.9 K). There is an important
difference, however, in this second family of regressions: the SEI’s for all
regressions are well below 90°F, and it is in fact possible to obtain good
regressions with ten or more terms present. Table 3 summarizes the fits of the
best regressions for these two values of R..

It is evident that there are major changes in the extent and complexity of
regressor-regressor correlations in this range of R.. Figures 1 and 2 illustrate
the correlations among 19 regressor terms for two intermediate R, values, 0.98 and
0.90. (Lines connecting terms indicate R y > R .) The clustering of the §

candidate regressor terms as a function of ﬁc is shown in Table 4.

A Strategy for Selecting Regressors. Based upon preliminary tests, R. was set at
0.920, and the 19 terms found to be free of correlations were taken as an initial
set.

1. The best regressors were selected, by R% ranking, from each of the clusters
of terms. The largest of these consists of ten terms (Figure 3). To
illustrate this selection process with this cluster, the Ca*Ti term is found
to make the greatest incremental contribution to the initial set. When this
term is selected, the collinearities shown in Figure 3 require that four
other terms (Ca, Ca*Na Ca*Si and K) be excluded. With these exclusions, two
other terms in this cluster -- Al*Ca and Ca*S -- are isolated from
collinearities and are therefore included. Upon analysis of the three
remajning terms, A1*K is found to make the greatest incremental contribution
to R and is inc]udgd; and its inclusion requires the rejection of K*Si and
K*Ti. A similar R testing procedure was used to select the most useful
terms from each of the other clusters.

2. The best 36 regressions {with four, five and six terms) from this enlarged
base were then examined, and several regressors -- which appeared in none of
the best regressions -- were dropped. Three of the 36 test regressions
exhibited multicollinearity. One term, [Si], appeared in all three
multicollinear regressions and in none of the 33 good regressions; this term
was also dropped.

3. Starting with 22 terms from the above process, steps 1 and 2 were repeated,
to ensure that the most useful terms from each cluster were included. After
this second iteration, a group of 23 terms remained.

4. To these final terms were added seven additional terms, selected from the
pool of remaining terms on the basis of the greatest incremental improvement
in overall R°. = For example, if the 24th term is Na*P, overall R° is
incremented by 0.0063, more than by any other added term; therefore Na*P is
added to the set.
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Step 4 clearly introduces collinearities. Na*P, for example, is collinear [R,
> R.] with P*S. Among other added terms Fe*Ti is collinear with Al*Fe, and Fe and
Fe*%i are collinear with both Fe*Ti and A1*Fe. The argument for inclusion of the
several terms in step 4 is pragmatic: the regressions with these terms are better
estimators than those without these terms, and this step still allows overall
collinearity to remain at an acceptable level by the SEI criterion.

Best Predictive Regressions. The best regressions obtained under reducing
atmosphere for the set of 70 ashes, following the above strategy, are given in
Tables 5-8. Calculations have been carried through ten regressor terms. It is
possible to generate predictive equations with even more regressors. However, the
incremental improvement falls to small values as the number of terms increases.
Furthermore, the probability of significance of each regressor term, which
typically is > 99.9% for good regressions with as many as nine terms, falls for at
least one regressor below 99% with the inclusion of the tenth term. Thus this
appears to be a natural break point for these data.

Figures 4-7 show plots of estimated vs. observed fusion temperatures, using the
ten-term equations of Tables 5-8. In the tables the average error is estimated
using the approximation of average error for large sets:

E(avg) = [RMSE}*[2/pi)™* (2)

The average observed errors of estimate are given in Figures 4-7. These are similar
to but slightly lower than the estimated values.

These calculations use data from all 70 ashes. If the three most remote outliers
areodropped from each calculation, the average error is decreased by an average of
3.0°F (1.7 K).

Further Tegting for Multicollinearity. The most common indicators of regression

fit are R° and the standard error of fit (RMSE). Table 9 summarizes key
characteristics of four regressions on softening temperature, all with good values
of R® and rmse. On the basis of these indicators alone, the choice would fall
between the 30-term and the 55-term regressions. This choice would be unfortunate.

By the SEI criterion [acceptable regressions must have SEI’s below 90°F (50 K)]
only the first of these four regressions is acceptable, the other three showing
SEI’s of 800°F and above, indicating excessively high collinearity.

An additional test for multicollinearity is examination of the precision of the
regression coefficients. Virtually all regression programs provide an estimate of
the standard error associated with each coefficient. We calculate precision as a
relative percentage:

P (%) = 100 * [S.E. of coefficient]/[value of coefficient] (3)

Coefficients in multiple linear regressions are seldom obtained in high precision,
since a moderate displacement in the value of any one coefficient can be balanced
by slight shifts in the values of others. For good regressions, precision as
defined in Eqn. 3 is typically in the range 5-30%. Table 9 shows the average
precision calculated for the ten coefficients of the first regression, and for the
first ten coefficients of each of the other regressions. The average error
increases tenfold in going to the 20-term regression, and over a hundredfold in
going to the 55-term regression.

Another test of the goodness of a regression is made by adding or deleting a dummy
variable (a regressor which itself has no predictive power). Instability of a
coefficient can then be calculated as:
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I' = [Cuwirieo / Cortcmar ~ 1] * 100 % (4)
where ¢ and C, are the regressor coefficients before and after
additioﬁ?&gfgtion of %Ré” ﬂmmy variable.

A two-digit random number term was added to each of these regressiong, taking the
first 70 random numbers listed in a standard statistical reference.”” For a good
regression this dummy variable should have very little effect upon the coefficients
of the ‘real’ regressors. For the 10-term regression in Table 9 the average
instability is 0.01%. However, the average instabilities for the first ten terms
of the other three regressions are from two to four orders of magnitude larger.

Perhaps the most practical test of the stability of regression coefficients is that
of adding or deleting cases from the dataset. If a regression is to have any
useful predictive power, it must be reasonably resistant to fluctuation of
coefficient values when cases are added or removed. Roughly, variations may be
expected to be of the order of magnitude of the precisions of estimate of the
coefficients, that is, typically 5-30% for good regressions.

Stability of coefficients to removal of cases was tested by deleting every fifth
case in the 70-case dataset, producing a reduced dataset of 56 cases. (This
deletion pattern was selected to avoid introduction of systematic bias.)
Coefficient instabilities were calculated by Eqn. (4). For the 10-term regression
of Table 9 the average instability is 14.1%, consistent with the average
coefficient precision of 15.8%. For each of the other regressions in Table 9 the
average average instabilities are well over 100%.

These three tests lend support to the use of a critical value of SEI as a
convenient indicator of excessive collinearity. The most practical and persuasive
showing of the utility of a good regression, however, is to demonstrate its ability
to predict from a subset of cases the AFT’s of "new" cases. We have taken the
coefficients obtained with good ten-term regressions using the reduced set of 56
cases, and have applied them to the 14 excluded cases, treating these as "new"
cases. Figure 8 shows the estimated and actual values of softening temperatures
for these "new" cases. The average error of estimate is 36.8°F (20.4 K). A
similar estimation of hemispherical temperatures yields an average error of
estimate of 34.1°F (18.9 K).

DISCUSSION

Gray7 has recently reviewed various British, American, Australian and international
standards for ash fusion temperature determinations. Repeatability (within a
laboratory) is 30-40 K for initial deformation temperature, 30 K for hemispherical
temperature and 30-50 K for fluid temperature. Tolerated reproducibility (between
laboratories) is generally in the range 50-80 K. The repeatability of instrumental
ash fusion temperature in this work (Table 2) is considerably tighter than these
figures. The average observed error of estimate for the four ash fusion
temperatures (Figures 4-7) is 15-18 K. This error includes contributions from coal
and ash inhomogeneities, splitting, chemical analysis and AFT determinations, as
well as inadequacies of the fitting equations. This approach therefore appears to
provide estimates of satisfactory precision.

In the better regressions for estimating softening and hemispherical temperatures
certain terms are encountered repeatedly. In softening temperature regressions
Al1*Ca, Ca*Fe, Na*P and P often occur, always with positive coefficients; Ca*Si, P*S
and P*Si also occur frequently, and always with negative coefficients. In
hemispherical temperature regressions Al*Ca, Ca*fe, and Na*P often occur, again
always with positive coefficients; Ca*Si, Fe*S and P*S often occur, and always with
negative coefficients. Across the ten best ten-term regressions for each AFT the
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coefficients in the different regressions are fairly constant, exhibiting standard
deviations of 10-20% relative. For example, in ten regressions on hemispherical
temperature the coefficients of the common terms and their standard deviations are:
Ca*Fe 41,910 +/- 4810, Ca*Si -11,740 +/- 940, Fe*S -47,610 +/- 8300, P*S -411,100
+/- 31,500.

Simple sensitivity analysis calculations have been made to determine, for various
regression models, the effect of an analytical error of 1% relative upon the
estimated AFT. For the best 10-term regression on softening temperature the
average sensitivity for the ten ashes analyzed is 4.0°F per % relative error. The
most sensitive analyte is Si0,, for which a 1% relative analytical error produces
an error of estimation of 18°f (10 K). This may be unacceptable for laboratories
using atomic absorptiap analysis, for which repeatability for Si0, is 2% absolute
or about 5% relative. Using the second best regression (with a loss in RMSE of
only 0.1°F) the average sensitivity is 2.9°F per % relative error, and that for
$i0, is reduced from 18° to 9.8°F. The best ten-term regression on hemispherical
temperature shows an average sensitivity of 2.6°F per % relative error, and a
sensitivity of 9.2°F per % relative error in Si0, determination. The eighth best
regression (which gives away 0.4°F in RMSE) shows an average sensitivity of 2.1°F/%
and for Si0, a sensitivity of 5.2°/%. As a practical matter it is obviously
sensible to determine not only the best valid regression but also a group of
regressions, perhaps the ten best valid regressions. The most useful of these can
then be selected on the basis of estimated analytical errors and sensitivity
analysis for each candidate regression.
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Table 3

Best Regression Fits at Two Values of R(critical)®

Blcritical) = 0,99
o RMSE, °F
.825 64.2°
.859 58.2
885 52.9°

Ricritical) = 0.85
[ RMSE, °F
.766 74.2°
.804 68.5
.855 59.3
.879 54.5
.895 51.2
.908 48.5
.914 47.2
.921 45.5

® Regressions meeting the criterion that SEI < 90°F [< 50 K].

> 200°F.

Correlation Clusters of Regressors at Various Levels of R

R

Scritical

0.99
0.98
0.95
0.92
0.90
0.88
0.85

terms in ¢lusters

5

6, 4,3,2,2,2
7,6,5,4,4,3,2
10, 7, 7, 5, g

19, 8,7, 5

27, 7, 5

40, 5, 3

Table 4

total terms

19
31
36
39
41
48

Fourth best regression ranked by R%; SEI's of first three regressions

None of the first ten regressions ranked by R® have SEI’s below S0°F.

critical

total free
terms

50
36
24
19
16



Table §

Best Ragressions on Initial Deformation Temperature

BHSEL°F

12.1

§6.1

51.5

49.5

§1.5

51.7

46.3

44.8

41.1

39.5

Intcpt.%F  Terms and Coefficients SELE &
k33 K| Ca*Fe  Al*Na
1,863°F -8.01E3  1.26E6 1.61E4 1.40E5 36.4 .803
Na*$i Fe*S - Ca*T{  Ca*fe  Al*Na '
1,822 5.60E4 -5,08E4 -3.49ES 7.85€4 1.43ES 34.3 .844
4 §$*S1 Ca*T{ Ca*fe Fe*Na
2,093 1.6664 -1.82E4 -2.50E5 6.26E4 -3.99ES
Al*s
2.96ES 37.1 .B77
P Hg*P S*S{ Ca*T1  Ca*Fe
2,138 1.3764 1.09ES -1.94E4 -2.87E5 6.63E4
Fe*Na Al*Na
-4.54ES  3.20ES 41.1 .886
P $*S4 Pest pas Ca*Ti
2,080 1,46ES -1.81E4 -2.49E5 -3.50E5 -3.23E5
Ca*fe Fe*Na  Al*Na
6.28E4 -4.43E5 3.50€5 50.4 9058
P PeSi K*s pas Fe*K
1,654 1.9565 -3.08ES -1.55E5 -6.17t5 1.21ES
Ca*T{ Ca*Fe  Fe*Na  Al*Na
-3.90E5 7.68E4 -7.73E5 3.71E5 . 68.8 9147
P P*Sy K*S p*s K*T{
1,609 1.94E5 -3.21E5 -1.63E5 -5.82E5 7.69ES
Fo*K Ca*TH Ca*Fe Fe*Na  Al*Na
9.03E4 -3.54E5 7.40E4 -7.30E5 3.50E5 69.8 .9212
Table 6

Best Regressions on Softening Temperature

Intcot.F  Terms and Coeffictents SELF £
prs K*P Na*P Al*Na
2,004°F  -3.76ES  6.92ES 3.15E6 7.30E4 21.5 .852
Ca*Si s A1*K Al*Ca NatP
1,896 -5.34E3 -5.52E5 4.09E4 1.48E4  5.64E6 54.4 .882
Ca*Si Fe*Sti K*S K*Na Ca*fe
2,344 -9.04E3 -5.85E3 -5.50E5 7.07E6 5.80E4
Fe*Na
-3.62E5 55.8 9047
4 Ca*Si S p*s A1*K
1,827 1,23E5 -9.31E3 -2,20E5 -8.26E5 5.21E4
Al*Ca  Na*P
2.23E4  4.GAES 47.9 .9240
Ca*Si Fe*Si L] Fa*S K+ta
2,212 -1.09E4 -2.73E3 -4,27E5 -4.33E4 1.69E6
Ca*Fe Al*Ca  Na*P
S.1SE4  B.48E3  4.20E6 65.3 .9286
" Fe*Mg  SI*T{  KeS s
1,806 1.33E5 -1.75E4 -2.89ES -3.03ES -5.48ES

2.62E6 -7.48E4 1,105 4.64ES 8.5 .9356

43.6

42.7

40.9

average

41.5

T o427

38.7

348

3.0

32.6




Best Regressions on Hemispherical Temperature

Intcpt.’F  Jerms and Coefficients

2,078

1,897

2,070

2,195

2,066

2,192

P*s K*p Na*p
-3.53€5 7.93e5 2.77E6

Ca*S1 P*S K74
-5.35E3 -4.80E5 1.09E6

Ca*si pes Fe*S
-4.41E3 -1.09€5 -3.62E4
Al*Ha

1.18E5

Ca*S4 K*$ pes
-1.18E4  1.34E5 -5.72E5
Al*Ca  Na*P

1.46E4  5.60E6

P Ca*Si PtS
1.81E4 -1.16E4 -3.61ES

Al*Na
6.21E4

Asa
1.61E4
K*P
1.29E6

Fe*S
-4,28E4

Fe*S
-3.04E4

Table 7

Ha*pP
4.75€6

Ca*Fe.
4.14E4

Ca*fFe
4.01E4

K*Na,
1.14€6

Fe*S
-4.26E4

SELF

25.2

69.3

25.8

23.1

36.7

66.2

£

.872

.896

9127

.9287

.9379

.9446

54.6

49.7

45.9

41.8

39.3

31.5

average

43.6

39.6

36.6

N.4

31.4

29.9

2,185°F

2,171

2,319

2,158

2,203

2,204

Best

Terms and Coefficients

S*S§ pes K*p
-8.74E3 -6.09E4  1.00E6

Mg*P  S*SI P
9.9764 -B.52E3 -1.06E5

$*Si K*p Ca*Ty
-1,88E4  6.33E5 -1.11€5
A*Ha

2.90E5

Mg*P Fe*Mg $*§§
2.19e5 -3.4584 -1.29€4

1.27e4  2.40E5

H *p Fe*Mg
6.66E4  2.33E5 -3.91E4
pes K*p Al*Ha
-2.05E5 1.10E6  2.44E5
T Mg*p Fe
5.02E4  2.35E5 -4.;?%4
pes K*p Ca*Fe

-1.89€5 1.11E6 7.83E3

i) Kg*p Fe*Mg
6.36E4 2.35ES -5.13E4
P*S

Table 8

Regressions on Fluid Temperature

Al*Na
1.73E5

K*P
1.06E6

Ca*Fe
3,30E4

pes
-1.39E5 -

$*Si
-1.45E4

S*S{
-1,57€4

Al*Na

2.57E5

$*54
-1.15€4

KTy

2.21E6

Al*Na
1.78E5

Fe*Na
-2.48€5

Kep
9.50E5

SiI* T4
-1.40€5

Si*T4
-1.10€5

SELF R
]
24.9 .892
24.6 .9010
3.0 9172
23.2 .9266
55.3 L9313
54.1 9355
79.9 .939]

53.1°F

51.2

47.1

4.8

43.7

42.7

average

42.3°F

40.8

37.6

34.8

34.0




" .Table 9

|

Indicators of Multicollinearity in Softéning Temperature Regressions

10 terms® 20 terms®
R? (uncorrected) .942 .9547
rmse 39.1°F 37.9°F
21.7 K 21.1 K
SEI 46.8°F 813°F
26.0 K 452 K
Avg precision of first
10 coefficients® 15.8 % 159 %
Avg instability of
first 10 coefficients
to a dummy variable® 0.01% 4.6 %
Avg instability of
first 10 coefficients
to removal of 14
cases® 14.1 % 111 %

30 terms®

.9667

36.4°F
20.2 K

>2120°F
>1170 K

272 %

32.1%

55 terms
.9770

50.5°F
28.1 K

»21,000°F
>11,600 K
52,400 %

400 %

>1,500 %

random number variable (see

fifth case in the dataset.

Best regression from Table 6.
Selected by forward selection procedure.

[S.E. of coefficient]/[coefficient] * 100%.

text).

246

Average shift in value of coefficients upon introduction of a

Average shift in value of coefficients upon deletion of every !



FIGURE 1

CORRELATIONS AMONG 19 TERMS

R(crit) = 0.98

Al-Ca
K-Al K-Si O Al-S Al-Na

Ca-Na Na-S

FIGURE 2

CORRELATIONS AMONG 19 TERMS
R(crit) = 0.90 |
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FIGURE 3

SELECTION TO AVOID COLLINEARITIES

FIGURE 4
ESTIMATE OF INITIAL DEFORMATION TEMP.
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T(soft) ESTIMATED

HEMISPHERICAL TEMP (ESTIMATED)

FIGURE 5 :
ESTIMATE OF SOFTENING TEMPERATURE
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FIGURE 6
-ESTIMATE OF HEMISPHERICAL TEMPERATURE
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3000

PIGURE 7
ESTIMATE OF FLUID TEMPERATURE
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. PIGURE 8

SOFTENING TEMPS OF 14 "NEW" ASHES
USING BEST SOFTENING TEMP REGRESSION
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